Generalized Rings of Integer-valued Polynomials
نویسندگان
چکیده
The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is whether it is a Prüfer domain. This question is answered affirmatively for algebraic integers and negatively for matrices, although in the latter case Prüfer domains arise as the integral closures of the polynomial rings under consideration.
منابع مشابه
Co-centralizing generalized derivations acting on multilinear polynomials in prime rings
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...
متن کاملOn P -orderings, Rings of Integer-valued Polynomials, and Ultrametric Analysis
Contents 1. Introduction 963 2. A game called í µí±-orderings 967 2.1. On í µí±-removed í µí±-orderings 968 2.2. On í µí±-orderings of order ℎ 969 3. Rings of integer-valued polynomials 969 3.1. Polynomials with integer-valued divided differences 970 3.2. Integer-valued polynomials having a given modulus 973 4. Smooth functions on compact subsets of local fields 976 4.1. The Banach space of...
متن کاملOn the Ring of Integer-valued Quasi-polynomials
The paper studies some properties of the ring of integer-valued quasi-polynomials. On this ring, theory of generalized Euclidean division and generalized GCD are presented. Applications to finite simple continued fraction expansion and Smith normal form of integral matrices with integer parameters are also given.
متن کاملGeneralizations of Dedekind domains and integer-valued polynomials
This talk will provide a snapshot of contemporary commutative algebra. In classical commutative algebra and algebraic number theory, the Dedekind domains are the most important class of rings. Modern commutative algebra studies numerous generalizations of the Dedekind domains in attempts to generalize results of algebraic number theory. This talk will introduce a few important generalizations o...
متن کاملInteger-valued Polynomials over Quaternion Rings
When D is an integral domain with field of fractions K, the ring Int(D) = {f(x) ∈ K[x] | f(D) ⊆ D} of integer-valued polynomials over D has been extensively studied. We will extend the integer-valued polynomial construction to certain noncommutative rings. Specifically, let i, j, and k be the standard quaternion units satisfying the relations i = j = −1 and ij = k = −ji, and define ZQ := {a+bi+...
متن کامل